
Under The Sun Drink Mixer

Laura Cano, Moises Dominguez, Mike Tyrlik,

Stephen Zimmerman

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — An Original Drink Mixer controlled by a

smart phone and powered by the sun. Living in the sunshine

state is a huge motivation in wanting to build a drink mixer;

Under the Sun Drink Mixer will be ideal for BBQs and

tailgating to increase hydration. In the midst of summer,

people want to be hydrated at all times and what better way

than a solar powered drink mixer.
Index Terms — Circuits, databases, microcontrollers,

microprocessors, power MOSFET, solar energy

I. INTRODUCTION

The idea of building a drink mixer is influenced by the

American culture and lifestyle of having convenient things

at hand and it is also influenced by the Floridian weather

which makes it more appealing to have an automated

drink mixer. However, it is known how hot Florida

Summers are and with tailgating season this fall what a

perfect way to enjoy the time than by having an automated

solar powered drink mixer!

Another incentive to build a drink mixer is to avoid long

queues when everyone is trying to serve a drink at the

same time. By ordering through the phone, the client

application will provide the user with a unique code. With

this code, the user can obtain their customized drink with

Under the Sun Drink Mixer.

Some of the goals during this project are to create a

social environment among its users by minimizing the

amount of time spent at serving drinks and increasing

social interaction. If less time is spent at serving, one

could interact more with the guests, family, and friends.

Also, with tailgating season approaching, people usually

put all beverages in a shared cooler and lose track of their

drinks while socializing. Having all the beverages in the

drink mixer apparatus, no one has to worry about other

people grabbing their drinks.

Fig. 1. Overview

II. SYSTEM PLATFORMS

A. BeagleBone Black

1. Overview

Fig. 2. Software Architecture

In the beginning, a custom PCB was designed that

utilized the TI AM335x ARM processor and was to run

for all of the necessary software. This processor provided

enough power to meet the requirements of Linux along

with all of the I/O pins that would be necessary to read

from sensors and to control dispensing devices. This

design, although efficient, was quite expensive to produce

in orders of one so the initial design was quickly modified

under the guidance and acceptance from Dr. Richie. The

resulting design contained several aspects of the original

design, with the exception that the use of the significantly

more affordable development board, the BeagleBone

Black, would be incorporated into the design. The Under

the Sun Drink Mixer uses a BeagleBone Black

Controlled by
Smart Phone

Scan Barcode

Cup is Detected

Drink will
Dispense

development board for various uses throughout the

project. It utilizes a Texas Instruments AM3359 1.0 GHz

ARM processor running Arch Linux 3.8.12. The Linux

operating system is loaded from the 2GB of onboard flash.

The primary role of the BeagleBone is to facilitate the

software required to keep track of and manipulate the

various drink orders from multiple users.

2. Web Interface

The web interface utilizes the common elements of

Linux, Apache, MySQL and PHP (LAMP). These

software components were chosen for their widespread

support, open source software model, and for their ability

to simplify several design aspects of our design and allow

us to focus on higher level functionalities. The primary

client iOS application communicates to the web interface

for several components that include: ordering drinks,

canceling drinks, checking container levels, checking

drink orders, and refilling containers.

Ordering Drinks

When a drink is ordered from the iOS application, the

iOS application sends the amount of ingredients in ounces

to the “Order Drink” web page using a POST request. The

server verifies that the variables that were received are

valid and all appropriate. If the correct variables were sent

and they are of the proper type and within acceptable

values, the server will retrieve several settings from the

SQL database. The first attribute that will be tested is the

amount of available ingredients. If there are sufficient

ingredients for the requested drink, the drink will be

reserved for the user. The reservation process entails

several steps. The first step that the server must undertake

is to create a unique order ID for the order. The order ID

employs the use of a Globally Unique Identifier (GUID).

The use of a GUID was chosen because of its ability to

greatly minimize the possibility of both duplicate order

IDs as well as the ability to correctly guess an order ID.

These two attributers are important aspects to consider

when trying to maintain a robust and collision free design.

Upon successful creation of the GUID, the server will

generate a timestamp to track order time. The server will

proceed to store all of the needed parts of information

before sending a reply to the client iOS application. When

all items are completed error free, the server will then

return the order ID and the order’s expiration time back to

the iOS application encoded using JSON.

Cancelling drinks

Since only one drink can be ordered at a time, the user

is allowed to cancel a drink if they change their mind and

would like to opt for a different choice of drink. This is

done using a POST request to the cancel drink page with

the order ID of the drink that is to be canceled. When the

server receives this request, it will first ensure that it was

given valid information. If the barcode exists and is of the

correct type, the server will then attempt to retrieve the

order with the specified order ID. If the order has not yet

expired or has not yet been picked up, this step will

succeed. Upon the retrieval of the order information, the

server will update the time in which the drink was ordered

by the maximum amount of time the user has to pick up

the drink. For instance, it the drink was ordered at 15:45

and the user cancels the drink before it expires at 15:55,

the server will change the time of day the drink was

ordered to 15:35. Here the server is only responsible for

making the drink order “expire” by changing the order

time from which it was ordered. After this occurs, the

drink will be considered expired and the database clean up

daemon (discussed later below) will handle the re-

allocation process of ordered ingredients.

 Checking Canister Levels

The iOS application can query the database to determine

the amount of unreserved ingredients and also the actual

amount of fluid remaining in the containers. When it

comes to ingredient status, the only amount that is stored

in the MySQL database is the unreserved ingredient

levels. That is the amount of an ingredient that is not

allocated toward making ordered drinks. Because only

non-reserved status is maintained, to find out how much

fluids are actually left in the bottles simple arithmetic

needs to be performed. By summing the reserved

ingredient amounts of the orders that have not yet expired

and the orders that have not yet been picked up with the

corresponding unreserved amounts stored in the database

we can calculate the actual bottle fill levels.

Checking Drink Orders

In order for the client application to maintain

consistency with the drink machine, there needs to be a

facility to verify drink order validity. In order to verify a

drink order, all that needs to be done is to send order ID to

the webserver. The webserver will then query the SQL

database and determine the validity of the order. If the

order is still valid, the server will return the order ID that

was received along with the expiration time back to the

iOS application. The expiration time is calculated using

the order time and the maximum reservation time. For

instance, if the drink was ordered at 17:06, the expiration

time would be 17:16. If the order ID is no longer valid, the

server will return failure messages and the iOS application

will make the proper adjustments.

Refilling Canisters

Since the amount of ingredients that has been dispensed

is tracked, there needs to be a way of updating the amount

that is contained in the bottles. The iOS application allows

for the user to notify the server that any of the ingredient

bottles have been updated or refilled with ingredients. This

is an important aspect to address because as shown in

figure 3 there can be a large amount of the bottle empty

that could be refilled to allow for more drink orders. For

instance, if a bottle can hold 64oz. and there is currently

20oz left in the bottle and 6 of those 20oz are unreserved

then that leaves 14oz that is reserved. In this instance, re-

filling can be done in order to prevent depletion of

ingredient amounts and to allow users to continue to order.

After the container is refilled with ingredients and the

application is notified of this change, the 64oz. container

now has 50oz. unreserved and 14oz. of reserved

ingredients. Both reserved and un reserved levels can be

viewed in the iOS application as discussed later below.

Fig. 3. Illustrated Example

3. Embedded Control Daemon

The Embedded Control Daemon is the control center of

the dispensing operation. Where the Web Interface

functionality of ordering a drink ends is where the

Embedded Control Daemon begins to pick up the

dispensing trail. The Embedded Control Daemon first

starts by reading input from the barcode scanner. It will

block the main thread until some input is received. Once

the first character is read the ECD will begin using a

timeout period between characters. If an entire order ID

length of characters is received, it will store the order ID

and move on. If there is too much latency between any of

the characters after the first, any buffered input will be

discarded and the ECD will begin blocking again. Once a

valid order ID is received the orders ingredients are

retrieved and are prepared to be dispensed. If the order has

not yet expired and has not yet been picked up, then the

order is considered valid. At this time the Embedded

Control Daemon will then send dispense commands to the

Control Board. If the Control Board successfully

dispenses the user’s drink it will signal back to the

Embedded Control Daemon stating such a condition. At

that point the Embedded Control Daemon will mark that

drink order as being picked up.

If the Control Board responds back as failing to

dispense correctly or if a timeout period is reached before

hearing back from the Control Board, the Embedded

Control Daemon will leave the order untouched. The

embedded Control Daemon will repeat this process of

blocking and dispensing continuously. If a second user

scans a barcode before the first user’s interaction with the

machine has completed or when waiting for the Control

Board to respond, the Embedded Control Daemon will

completely ignore it by flushing its USB input buffer

before reading more barcodes. This decision was made

with impression that if someone is using the machine and

it is busy interacting with someone else it will ignore the

other background "noise".

In order to communicate with the Control Board the

Embedded Control Daemon has a special protocol that is

used to communicate over the serial communication lines

between the Control Board and the Embedded Control

Daemon. The various control codes and

acknowledgements are shown below in table 1.

Table 1: Dispense Codes

Command Meaning

D
Dispense with the

following ingredients

F Finished

Y Yes/Ok/Continue

N No/Stop

T End Line

Z
Finished dispensing the

current drink

For example, by using the dispense codes shown in

Table 1, 3000oz. of all six ingredients can be dispensed by

using the sample dispense code below. All the dispense

codes must begin with a “D” in which the Control Board

will respond with a “Y”. For any ingredient amount that is

to be sent to the Control Board must be terminated with

the escape character "T". This is required to inform the

Control Board when to expect the end of a line. After

every command received, the Control Board is responsible

for sending a continue command "Y". With the dispense

code below, the Embedded Control Daemon will receive

eight "Y"s from the Control Board if all messages are

received correctly. Upon successfully dispensing the drink

ingredients, the Control Board will inform the Embedded

Control Daemon with the control code "Z".

Fig. 4. Sample Dispense Code

4. Database Clean Up Daemon

The Database Clean Up Daemon serves two distinct and

important fundamental purposes. The first purpose of the

Database Clean up Daemon is to look for drink orders that

have not yet expired. This is important because the data in

an SQL database is passive and will not react on its own.

In the event that a drink order is found that has expired,

the Database Cleanup Daemon will mark the order as

expired, however the more important and second purpose

of the Database Cleanup Daemon is to un-reserve the

order’s ingredients back to the bottle for other drink orders

to utilize. Without this, the bottles ingredients would be

“lost” because the ingredients could be reserved but fi

never picked up by the user they would never be un-

allocated.

5. Barcode Scanner

The barcode scanner that was implemented into the

design was the Motorola DS9208-SR4NNU21Z Desktop

Barcode Scanner. This barcode scanner offers everything

that the Under the Sun Drink Mixer needs; it is a hands-

free device, it can read off of mobile devices, it can scan

in direct sunlight and in darkness, and it offers USB

connectivity. The Barcode scanner utilizes the Human

Interface Device (HID) protocol for communication,

simplifying the interactions required between the scanner

and the Embedded Control Daemon.

6. Database

The data management system that was chosen to be

used was MySQL. The use of a relational database to store

orders and ingredient levels drastically simplified the

complications of storing and retrieving user data and also

allows for future growth with minimal re-working. The

use of a relational database also allows for the ability to

easily store a large amount of records which allows the

ability to add history, user statistics and other management

tasks that were not able to be implemented in the current

revision of this dispenser. The database schema that was

employed consisted of the variables that were needed to

store drink orders. The database schema used can be seen

below in Figure 5.

Fig. 5. Database Schema

B. Control Board

1. Overview

The Control Board is a component that is responsible

for all of the manual dispensing tasks. It consists of an

ATmega328p microcontroller that interacts and

communicates with the Embedded Control Daemon that

runs on the BeagleBone Black. This control board runs the

commands sent to it using the communication protocol

discussed above in Table 1 and Figure 4. The Control

Board is responsible for translating the volumetric

measurements of the drink order into time based values

that will be used. The Control Board uses a series of

interrupt based timers to dispense the various ingredients.

Throughout the dispense process if the user is taking too

long to complete any given task, the dispensing is

cancelled. If the drink order had any part of it dispensed,

the drink will be marked as dispensed. If the user did not

get past the second step of placing the cup into the

dispense notch, the dispensing will be canceled but they

will be able to try again later as long as the order did not

expire within that time.

2. LCD Screen

During the dispense process the user is given feedback

and some instructions as to what they are required to do

next. The LCD Display is the only feedback that is

provided to the user of the status of during the dispensing

process. The screen encompasses updates to the user of

the four different stages of the dispensing process. These

stages can also be viewed as a state diagram for the

Control Board and are:

1) Scan order barcode

2) Place cup under dispenser

3) Wait for dispensing to complete

4) Customer appreciation

The LCD screen that is employed is a 1.8 inch TFT with

true TFT color up to 18-bits per pixel, and a resolution of

160 X 128. This LCD is powered with an input voltage of

5V and uses the Sitronix ST7735R as the display interface

driver. The LCD uses the Serial Peripheral Interface Bus

(SPI) as a communication interface, consuming six I/O

pins to the microcontroller.

Fig. 6. LCD Dispensing Stages

3. Dispensers

The entire vending unit includes six 12 volt electronic

solenoid valves which dispense the ingredients, such as

liquors or mixers. The six electronic valves control how

much liquid comes out of the syphon tube and into the

customer’s cup. All the six bottles have around two liters

each (64 ounces). The CO2 tank holds enough volume to

fully displace all the contents in the ingredients several

times allowing for multiple ingredient bottle refills per

CO2 tank fill. An air regulator is used to reduce the

approximately 1800 psi of the tank to approximately 5 psi

that is fed into the bottles for dispensing. PVC tubing

connects the various components of the dispensing

system. The electronic solenoids are controlled by

microprocessor on the Control Board. The I/O pins on the

Control Board are isolated from the solenoids and higher

voltage electronics by the use of opto-isolators. Figure 4

below shows the solenoid component from the overall

circuit. It takes approximately .5 Amps at 12V to open the

solenoid during dispense time. Due to this high current

draw, the Control Board dispenses the ingredients serially

one after another.

Fig. 7. Solenoid Component Schematic

4. Cup Sensor

In order to only dispense ingredients into the user’s

container, a short range infrared sensor is utilized to detect

the presence of a cup. An infrared sensor is ideal since it

has a fairly accurate distance measuring capability at the

somewhat short ranges needed. The infrared sensor also is

able to measure distances in both daylight and darker

environments. Given that the space provided for the cup

will be about 8 inches and the sensor should not detect the

other side of the cup slot in the absence of the cup, the

analog to digital converter on the microcontroller is biased

to increase the measuring resolution within this range.

The sensor that is his sensor has an analog output that

varies from 3.1V at 3cm (1.18in) to 0.3V at 30cm (3.94in).

C. iOS APP

The primary software interface that the user encounters

is the application written for iOS on Apple’s iPhone. This

application serves the purpose of allowing users to browse

a menu of available drinks to create, order a drink from

the menu, and generate a barcode to pick up the drink,

cancel a drink order, and perform some basic maintenance

tasks. The application is designed to be a fully functioning

application that is simple to learn and efficient to use. The

application utilizes TCP/IP to communicate with the Web

Interface, allowing almost endless methods to

communicate as well as an incredibly flexible security

methods. If needed, communication encryption and

various levels of authentication can be added to all

operations.

1. Ordering

Users are able to order drinks with the use of the iOS

application. Users are presented with a menu of

predetermined drinks along with the ingredients used to

create the drink. The application allows the user to scroll

through the various drink choices. Upon finding the most

desired drink, the user simply presses the order button

conveniently located at the bottom of the screen. The

reservation request is then sent to the server. If there are

not enough of any ingredients to fulfill the drink order, the

ordering will fail and the user will be alerted of the reason.

The order is an asynchronous process, allowing the user to

browse about the other areas of the application while the

order is taking place. When the order is complete and the

order ID is received, the drink is displayed in the "Pick

Up" section of the application. The "Order Drink" button

will be disabled if the user actively has a valid order ID.

Fig. 8. Ordering Drink

2. Picking up & Cancelling

The application gives the user the ability to pick up a

drink that they have ordered from the machine. To do this,

the user can navigate to the “Pick Up” section of the

application to view the drink that is waiting to be picked

up. While on the “Pick Up” screen, the user is presented

with a barcode that is used when picking up the drink they

ordered. The user will then be required to go to the

machine and scan the barcode while no other drink order

is actively being dispensed. In the event that the user does

not pick up the drink before the order expires, the user will

get a message saying that their drink order expired due to

waiting too long to pick up their drink. Figure 9 shows the

overall view of the pick-up screen after the user pressed

the "Order Drink" button shown in Figure 8.

From the “Pick Up” screen the user is also able to

cancel their current drink order. If this is the case, the user

presses “Cancel” and a cancel request is sent to the web

interface. The order will only be removed from the “Pick

Up” view if the order is successfully canceled, if the drink

has expired, or if the drink has been picked up. The user

also has the ability to verify that their drink order is still

valid by pulling down on the menu. This will initiate a

background operation so the user may continue to use the

application while the refresh is occurring.

Fig. 9. Cancelling Drink

3. Maintenance

To aid in the operation and maintenance of the Under

the Sun Drink Mixer, it was decided that the user would

be able to update the fill level of the ingredient canisters

directly from the iOS application. This concept is

discussed in significantly greater detail above in section 2-

A. Another feature that the user can also easily modify is

the name of the machine in which they are communicating

with. This can be modified through the use of a keyboard

entry field within the application.

Fig. 10. Tracking

III. POWER BOARD

To charge the system that will be used the battery will

be the maximum power point tracking design. This

includes both buck and boost circuitry in a full bridge

configuration. A microcontroller will control the

MOSFET’s that will implement the buck or boost circuits

based on the input voltage from the solar panel and the

battery voltage. Current sense modules will be used to

sense current coming in from the solar panel and current

going into the battery; when current into the battery is low,

the battery is charged. Two IRF2104 is a high voltage,

high speed power FET and IGBT driver with both high

and low side output channels that will drive the buck and

boost circuitry

Fig. 11. Buck-Boost Converter

The Atmega328p will be used to implement the MPPY

algorithm. A constant voltage method with the varying

output of the solar panel and produce a constant 13.8 volts

during the charge state. Once the battery is fully charge

the controller will turn off charging and wait till the

battery voltage drops to 13 volts, the controller will then

go back into the charge state and charge the battery back

up to complete charge.

1. Solar Panel

Two 10 watt solar panels from solar power tech, Inc.

will be used to charge the battery. The current is .59A and

the voltage is 17.3V; since both panels will be parallel, the

current will be doubled.

2. Battery

A 12 volt 12 amp hour lead-acid battery will be used to

power the project. If battery voltage is low, slow charge

current is applied, if battery voltage is higher than 10

volts, high charge current is applied. When battery voltage

reaches 14 volts, a floating charge voltage of 13.4 volts is

applied. Lead-acid charge profile can be seen in figure 4.

Fig. 12. Lead-Acid Charge Profile

3. Charge Controller

The ATmega microcontroller contains a half bridge

IRS2104 driver which increases the voltage of Buck-Boost

converter. There are currents sensing for input/output

ASC712 module and it has 5V regulator to power the chip.

CONCLUSION

All of the aforementioned systems comprise a collection

of components needed for the design of Under the Sun

Drink Mixer. It encompasses multiple and complex

components which when working together in harmony,

permits for the functionality of the system for the pleasure

and enjoyment of its users.

ACKNOWLEDGEMENTS

Stephen Zimmerman is currently a

senior at the University of Central

Florida. . He plans to graduate with a

Bachelor’s of Science in Computer

Engineering in December 2013. After

graduation, he will be serving in the

United States Air Force as a Cyber

Operations Officer. He is currently a

cadet in the Air Force ROTC program.

Laura Cano is currently a senior at the

University of Central Florida. She plans

to graduate with a Bachelor’s of

Science in Computer Engineering and

an International Engineering Minor in

December of 2013. She is Currently

working at Siemens Energy as a Project

Manager.

Moises Dominguez is currently a

senior at the University of Central

Florida. . He plans to graduate with a

Bachelor’s of Science in Electrical

Engineering in May of 2014. He has

accepted an offer at Southern

Manufacturing Earnest products here in

Orlando as a manufacturing

engineering.

Mike Tyrlik is currently a senior at the

University of Central Florida. He plans

to graduate with a Bachelor’s of

Science in Computer Engineering in

December 2013. Currently an intern at

Lockheed Martin Corporation as a

Software Developer.

REFERENCES

[1] “AN-2121 SolarMagic SM3320- BATT-EV

Charge Controller Reference Design”, Texas

Instruments, Dallas, Texas, December 2010.

